
 

Artistic Polyhedra 
 

Participants: 
Ages 14 and up, depending on the activity.  
No prior math knowledge is needed, but as you progress through the activities, you may 
need to apply mathematical concepts like polygons, regular polygons, and polyhedra, as 
well as use basic facts such as the sum of the angles in a triangle, the golden ratio, basic 
geometric constructions, or and cartesian coordinates. 

 
Materials: 

For the physical models, wooden skewers and rubber bands are used. Optionally, the 
skewers can be colored with paint. In some constructions, it may be useful to make 
polyhedra from string to avoid cluttering with skewers. You can also construct polyhedra 
with colored cardboard. 

 
Some of the images can be projected in the classroom by the teacher. Additionally, some 
activities include links to animations and interactive apps online. 

1. Regular polyhedra. 
Preliminary questions: 
 
 What is a polyhedron? 

- It is a three-dimensional solid bounded by flat faces. The faces are flat polygons. 
- The line segments where two faces meet are called edges. 
- The points where three or more faces meet are called vertices. 

 
What is a regular polyhedron? 

- The faces are identical regular polygons. (A polygon is regular if all its sides have the 
same length and all its angles are equal.) 

- AND each vertex is adjacent to the same number of faces. 
- AND the polyhedron is convex. 
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The five regular polyhedra: 

 

       
Tetrahedron   Hexahedron (Cube)   Octahedron 
 

  
 Dodecahedron   Icosahedron 

 
These are the only five regular polyhedra, also known as Platonic solids. (click on the links to 
manipulate the polyhedra) 
 
From the pictures and the number and type of faces, deduce the number of edges and vertices 
(how many skewers and rubber bands you will need) and build the five regular polyhedra.  
 

Regular 
polyhedron 

Type of face Number of faces Number of 
vertices 

Number of 
edges 

Icosahedron triangle 20 12 30 

Octahedron triangle 8 6 12 

Tetrahedron triangle 4 4 6 

Cube square 6 8 12 

Dodecahedron pentagon 12 20 30 
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https://www.atractor.pt/mat/poliedros/s3js.html?pre=pol_169&md=mo
https://www.atractor.pt/mat/poliedros/s3js.html?pre=pol_24&md=mo
https://www.atractor.pt/mat/poliedros/s3js.html?pre=pol_113&md=mo
https://www.atractor.pt/mat/poliedros/s3js.html?pre=pol_47&md=mo
https://www.atractor.pt/mat/poliedros/s3js.html?pre=pol_98&md=mo


 

 
 

Observe Euler’s relation:  
F + V = E + 2 

where F, V, and E are the number of faces, vertices, and edges, respectively. 
Also, observe that there is a close relationship between: 

● The octahedron and the cube. 
● The icosahedron and the dodecahedron. 
● The tetrahedron and itself. 

(Compare the numbers of vertices, edges, and faces.) 
 
They are called dual: The vertices of one correspond to the faces of the other, and vice versa. 
You can obtain them by placing the vertices of one at the center of the faces of the other. The 
edges correspond one-to-one, but they are rotated 90º in the dual polyhedron. 

Only five regular polyhedra 
Let’s prove that there are only five regular polyhedra. You can use paper or cardboard and 
adhesive tape to build the figures in the argument. 
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We know that in a regular polyhedron, all the faces are equal regular polygons, and let n be the 
number of faces that coincide in a vertex. 
 
Step 1: If n = 2, explain why it is not possible to build any kind of polyhedron. 

 
 
Step 2: We already know that n  3. Let’s try to build all possible regular polyhedra, starting by ≥
using equilateral triangles. 

● If n  3, is it possible to build a regular polyhedron? If possible, build it by joining 3 =
triangles in each vertex. 

● If n  4, is it possible to build a regular polyhedron? If possible, build it by joining 4 =
triangles in each vertex. 

● If n  5, is it possible to build a regular polyhedron? If possible, build it by joining 5 =
triangles in each vertex. 

● If n  6, it’s not possible to build a regular polyhedron. Why not? =

 
● If n  6, it’s not possible to build a regular polyhedron. Why not? >

 
Step 3. Let’s move on to squares. 

● If n  3, is it possible to build a regular polyhedron? If possible, build it by joining 3 =
squares in each vertex. 

● If n  4, it’s not possible to build a regular polyhedron. Why not? =

 
● If n  4, it’s not possible to build a regular polyhedron. Why not? >
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Step 4. Let’s move on to regular pentagons. 
● If n  3, is it possible to build a regular polyhedron? If possible, build it by joining 3 =

pentagons in each vertex. 
● If n  4, it’s not possible to build a regular polyhedron. Why not? ≥

 
Step 5. Finally, let’s use hexagons. Explain why it wouldn’t be possible to build a regular 
polyhedron using regular hexagons. 
Explain why it wouldn’t be possible to build a regular polyhedron using regular heptagons (7 
sides), regular octagons (8 sides), etc. 

Non-regular polyhedra 
A polyhedron is convex if, for each couple of points on the faces, the segment joining the points 
is entirely contained in the polyhedron. 

  
Example of a non-convex polyhedron (click here to manipulate the polyhedron) 
 
In a regular polyhedron, all the vertices are identical (they have the same number of faces 
coinciding. 

 
An example of a polyhedron with all its faces regular polygons, but not a regular polyhedron (at 
some vertices coincide three faces and on others four). (Click here to manipulate the 
polyhedron). 
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https://mathina-hub.netlify.app/apps/anims/poliedros.html?pre=pol_1
https://mathina-hub.netlify.app/apps/anims/poliedros.html?pre=pol_42


 

 
The definition of regular polyhedra forbids these cases.  
 

● You can play on this app [Mathina] to distinguish between convex and non-convex 
polyhedra. 

● You can truncate, stellate, and make other modifications to polyhedra to obtain new 
solids with this app [IMAGINARY GitHub]. 
 

Euler’s relation 
We have already observed a relationship between the number of faces, edges and vertices in 
the Platonic solids. This relation applies to many more non-regular polyhedra:  
 
Euler’s relation. For any polyhedron equivalent to the sphere, the following relation holds 

,  𝑉 − 𝐸 + 𝐹 = 2
where  is the number of vertices,  is the number of edges, and  is the number of faces. 𝑉 𝐸 𝐹
 
More generally, Euler’s characteristic, denoted by the Greek letter 𝜒, is defined as 

. χ =  𝑉 − 𝐸 + 𝐹
The theorem states that 𝜒 = 2 for most of the polyhedra you may think of. Exceptions, that is, 
polyhedra not equivalent to a sphere, include, for instance, a polyhedral torus, or the 
Kepler-Poinsot polyhedra (when thought as having intersecting faces) because they wrap 
around the sphere more than once. All convex polyhedra have 𝜒 = 2. 
 

 
A non-regular, non-convex polyhedron with the shape of a torus, with 𝜒 = 0. 

 
Let us prove Euler’s relation. 
 
Step 1. Since the relation does not involve angles, lengths, or other metric measurements, we 
can deform the skeleton (i.e, the edges and vertices) as a flexible graph and flatten it in a plane. 
Prove that one can draw the skeleton of a convex polyhedron over a flat plane, without having 
the edges intersecting, yielding a planar graph. A graph is called planar when its edges do not 
cross (they touch only at their endpoints, which are vertices). 
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https://mathina-hub.netlify.app/story/the-polyhedron-carousel/?actionLink=tg26
https://imaginary.github.io/iframezoom/iframezoom.html?width=1560&height=1170&bgcolor=000000&url=https://imaginary.github.io/cindyjs-apps/polytope-morpher/app.html?lang=en


 

For instance, we can do it with the Platonic solids: 

 
Note that each graph has the same number of vertices, edges, and faces as the original 
polyhedron. The “faces” are the enclosed regions, together with the exterior unbounded region. 
 
 We can therefore prove Euler’s relation for planar graphs. 
 
Step 2. Show that on each planar graph, we can find a path that connects all the V vertices, 
using V  1  edges.−

 
 
Step 3. Assume that we remove all edges except those on the path connecting the vertices. 
Prove that for this graph, we have 𝜒 = 2. 
 
Step 4. Add back the edges removed in the previous step, one by one. Prove that by adding 
each edge, the Euler characteristic remains 𝜒 = 2, until we recover the graph of our original 
polyhedron. 

Extra challenges 
● Shapes with pentagons and hexagons have been used for architectural design, for 

instance, the Montreal Biosphere designed by Buckminster Fuller in 1967. In the 
Montreal biosphere, the faces are triangles assembled by 5 or 6 at each vertex. Using 
Euler’s formula, show that (if the sphere was complete) there are always exactly twelve 
vertices attached to five triangles. 
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The Montreal biosphere 

Image: Cédric THÉVENET, via Wikimedia Commons, CC BY-SA 3.0 
 

● Goldberg polyhedra are polyhedra whose faces are all pentagons and hexagons and 
have the same symmetries as the icosahedron. Using Euler’s formula, show that any 
polyhedron, whose faces are pentagons and hexagons, has exactly twelve pentagons. 
(Note that the icosahedron has exactly 12 vertices and five triangles are attached to 
each vertex.) 

 

 
A Goldberg polyhedron 

Image: Tomruen, via Wikimedia Commons, CC BY-SA 3.0 
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Another Goldberg polyhedron is the truncated icosahedron, the soccer ball we know 
well.  

 
The truncated icosahedron  

9 



 

Descartes’ theorem 
When you build a polyhedron, you assemble faces at each vertex. You can count the sum of 
the angles of the faces adjacent to a vertex. This sum is 
● Smaller than 360º if the polyhedron is convex near that vertex; 
● Equal to 360º if the polyhedron is flat near that vertex; 
● Larger than 360º if the polyhedron is concave near that vertex. 

The difference between 360º and the sum of the angles at one vertex is called the defect at 
that vertex. (Note that the defect is negative in the third case.) 

 
The defect at a vertex of a dodecahedron is 360º  3x108º = 36º. −

 
 

Descartes’ theorem: For a polyhedron, the sum of the defects at each vertex, also called 
the total defect, equals 720º.  
 
a) Check Descartes’ theorem on the regular polyhedra, or other polyhedra, such as the 

truncated icosahedron. 
b) Prove Descartes’ theorem using Euler’s formula: 

i) First, you can reduce the problem to that of a polyhedron with triangular faces. 
For that, it suffices to take an inner point inside each polygonal face and join it to 
all vertices of the face, thus dividing the face into triangles.  
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If a face has n edges, the process adds one vertex (the inner point), n edges 
joining the inner point to the vertices, and a face is replaced by n triangular faces. 
Hence Euler’s formula (V + F = E + 2) remains valid.  

ii) Prove Descartes’ theorem for a polyhedron with triangular faces. Let D  be the 
sum of the defects, V be the number of vertices, E be the number of edges, and 
F be the number of faces.  Then: 

E = 3/2 F.  
since each Face has three edges, and each edge gets counted twice. 

D = 360º V 180º F. −
 

Thus, 
D = 180º(2V  F) = 180º(2V + 2F  3F) = 360º(V + F  3/2F)  − − −

= 360º(V + F  E) = 360º x 2 = 720º.  −
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Building the omnipolyhedron 
An arrangement of the five regular polyhedra inscribed into each other that displays some of 
their relations and properties is sometimes called an omnipolyhedron (it is not a single 
polyhedron, but an arrangement of polyhedra). 

 
We propose three partial constructions of inscribed polyhedra. You can make any of these, or 
combine the three to build an omnipolyhedron. You can use wooden skewers and rubber bands. 
The icosahedron can also be made of string once the octahedron is built. You can also buy a kit 
from Zometool. 

The cube, the tetrahedron, and the octahedron. 
Build a cube. Add one diagonal on each of the six faces, building a tetrahedron: for that 
purpose, you need to choose diagonals, all of whose endpoints are on four vertices of the cube, 
and three diagonals are attached to each of these four vertices (there are two ways to do it.) 
Join the midpoints of the tetrahedron’s edges, building an octahedron. 
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https://www.zometool.com/products/keplers-obsession.html


 

 

 
 
Sketch this construction on paper, build it with sticks, and prove mathematically that it works. 
Calculate the lengths of the tetrahedron and octahedron’s edges. 
 
Note that the edges of the octahedron are at the center of the faces of the cube, so we can see 
that the octahedron is the cube's dual. You obtain the dual tetrahedron if you choose the other 
diagonals of the cube’s faces. 

The icosahedron inscribed into the octahedron 
A regular icosahedron can be inscribed into a regular octahedron so that each of the twelve 
vertices of the icosahedron lies on one of the twelve edges of the octahedron, and these 

vertices split the edges in a golden ratio (  is the golden ratio, given by the ϕ =  1+ 5
2 ≃ 1. 618...

equation , or equivalently ),  ϕ
1 = ϕ+1

ϕ ϕ2 = ϕ + 1
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Sketch this construction on paper, build it with sticks, and prove mathematically that it works. 
 
Hint: Each face of the octahedron contains one triangular face of the icosahedron. Compute the 
length of its side. The rest of the icosahedron's edges lie on the octahedron's interior. Prove that 
their length is the same as the previously built edges. 
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The dodecahedron circumscribed to the cube 

 
Take a cube. On top of each square face, build a “roof” made of two triangles on opposite sides, 
and two trapezoids on opposite sides, using five sticks (first build the two triangles by adding 
two sticks to each of two opposite sides, then join the free vertices with the remaining stick). 
Make the roofs on each of the cube’s faces such that a trapezoid meets a triangle. If the length 
of the new edges is exactly 1/ϕ of the cube’s edge,  then the trapezoid and the triangle paired 
around a cube’s edge will align perfectly to form a regular pentagon, and the global result will be 
a regular dodecahedron. 

 
 
 
Sketch this construction on paper, build it with sticks, and prove mathematically that it works. 
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Extra challenges 
● Take three golden rectangles (in a golden rectangle the length is ϕ times the width.) Cut 

a slit on the center of each of them (the size is the width of the rectangles), and 
assemble them such that each rectangle is perpendicular to the other two. The twelve 
vertices are arranged as in an icosahedron. Prove it and build it. 
Note: Most credit cards and business cards are golden rectangles. You can use these 
cards and some string to make the edges. 

 

 
 

● Take three rectangles whose length is  ϕ2 times the width  Cut a slit on the center of each 
of them, and assemble them such that each rectangle is perpendicular to the other two. 
Insert this construction into the center of a cube of side ϕ, keeping the rectangles parallel 
to the faces. Then, the twelve vertices of the three rectangles, plus the eight vertices of 
the cube, form the set of vertices of a regular dodecahedron. 
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● Build a model in GeoGebra by calculating the cartesian coordinates of all the vertices. 

Solution: 
○ Cube:  ± 1, ± 1, ± 1( )
○ Tetrahedron: the subset of vertices of the cube, such that there is an even 

number of minus signs. 
○ Octahedron: , ,  ± 1, 0, 0( ) 0, ± 1, 0( ) 0, 0, ± 1( )
○ Icosahedron: , and their cyclic permutations, namely± 1

ϕ , 0, ± 1 − 1
ϕ( )( )

 and . 0, ± 1 − 1
ϕ( ), ± 1

ϕ( ) ± 1 − 1
ϕ( ), ± 1

ϕ , 0( )
○ Dodecahedron: These of the cube, together with , and their cyclic ± 1

ϕ ,  0,  ± ϕ( )
permutations, namely  and   0, ± ϕ, ± 1

ϕ ,( ) ± ϕ, ± 1
ϕ ,  0( )

 
 

Regular 
polyhedron 

Number of faces Number of 
vertices 

Number of 
edges 

Edge length 

Icosahedron 20 12 30  1

ϕ2

Octahedron 8 6 12  2
2

Tetrahedron 4 4 6  2

Cube 6 8 12  1

Dodecahedron 12 20 30  1
ϕ
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The Kepler-Poinsot polyhedra 

  
Great dodecahedron  Small stellated dodecahedron 

   
Great icosahedron  Great stellated dodecahedron 

 
There are four Kepler-Poinsot polyhedra, and they are all non-convex. They seem to have lots 
of faces, edges and vertices. For instance, to build a small stellated dodecahedron out of 
cardboard, you need to cut and glue 60 faces. This polyhedron has 90 edges and 32 vertices. 
Hence, Euler’s relation is again true.  
 
But mathematicians have a lot of imagination and creativity. Indeed, look again at the small 
stellated dodecahedron. And look at the five yellow triangles. They all lie in the same plane. If 
we are to complete the missing middle part (which has the shape of a pentagon, what we have 
is a regular five-pointed star, called a pentagram. Hence, mathematicians can decide to view the 
middle part of the star, not as missing, but as lying inside the polyhedron. The same is true for 
all other small faces. By groups of five, they belong to other pentagrams, whose middle part lies 
inside the polyhedron. Since we started with 60 faces, this will result in twelve pentagrams. 
Hence we can consider this small stellated dodecahedron as having twelve (hence the name) 
generalized faces in the shape of pentagrams, that are allowed to intersect! Mathematicians 
decide to enlarge the definition of polyhedron, so as to allow such a construction, 
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You are now invited to analyse in a similar fashion the three other Kepler-Poinsot polyhedra. 
The two stellated dodecahedra have twelve faces, which have the shape of pentagrams. The 
great dodecahedron has twelve intersecting pentagonal faces. The great icosahedron has 
twenty intersecting triangular faces. 
 
You can try to build some of these polyhedra out of skewers and/or cardboard. 
 

 

Other resources 
● Read a fantasy story about poyhedra online, with interactive apps and films. 
● The Portuguese association Atractor has many animations and images of polyhedra 

(and their nets, properties, etc) on their website. 
● Zometool. Kepler’s obsession. 

https://www.zometool.com/products/keplers-obsession.html  
 
 
 
 
 
 

Create and Share! 
Share the participants’ findings using the hashtags #idm314polyhedra 
and #idm314. 

 
© 2024 Ana Cristina Oliveira, Daniel Ramos, Christiane Rousseau.  
This work is licensed under a Creative Commons Attribution 4.0 International License. 
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https://mathina-hub.netlify.app/story/the-polyhedron-carousel/
https://www.atractor.pt/mat/poliedros/pol_index_mdmo-_en.html
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